CHEM 145 Lecture Problems Molecular Weight

Molecular Weight Calculations:

```
NaCl
    MW \(_{\mathrm{Na}}:=22.989768 \cdot \mathrm{gm} \cdot \mathrm{mole}^{-1}\)
    \(\mathrm{MW}_{\mathrm{Cl}}:=35.4527 \cdot \mathrm{gm} \cdot \mathrm{mole}^{-1}\)
    \(\mathrm{MW}_{\mathrm{NaCl}}:=\mathrm{MW}_{\mathrm{Na}}+\mathrm{MW}_{\mathrm{Cl}} \quad \mathrm{MW}_{\mathrm{NaCl}}=58.442468 \circ \mathrm{gm} \cdot \mathrm{mole}^{-1}\)
\(\mathrm{H}_{2} \mathrm{O} \quad \mathrm{MW}_{\mathrm{H}}:=1.00794 \cdot \mathrm{gm} \cdot \mathrm{mole}^{-1}\)
    MW \(_{\mathrm{O}}:=15.9994 \cdot \mathrm{gm} \cdot \mathrm{mole}^{-1}\)
    \(\mathrm{MW}_{\mathrm{H} 2 \mathrm{O}}:=2 \cdot \mathrm{MW}_{\mathrm{H}}+\mathrm{MW}_{\mathrm{O}}\)
    \(\mathrm{MW}_{\mathrm{H} 2 \mathrm{O}}=18.01528 \mathrm{~g} \mathrm{gm} \cdot \mathrm{mole}^{-1}\)
\(\mathrm{CFCl}_{3} \quad \mathrm{MW}_{\mathrm{C}}:=12.011 \cdot \mathrm{gm} \cdot \mathrm{mole}^{-1}\)
    MW \(_{F}:=18.9984032 \cdot \mathrm{gm} \cdot \mathrm{mole}^{-1}\)
    \(\mathrm{MW}_{\mathrm{Cl}}=35.4527 \mathrm{~g} \mathrm{gm} \cdot \mathrm{mole}^{-1}\)
    \(\mathrm{MW}_{\mathrm{CFCl} 3}:=\mathrm{MW}_{\mathrm{C}}+\mathrm{MW}_{\mathrm{F}}+3 \cdot \mathrm{MW}_{\mathrm{Cl}}\)
    MW \(_{\text {CFCl3 }}=137.3675032\) mole \({ }^{-2}\) ogm \(\cdot \mathrm{mole}\)
\(\mathrm{C}_{2} \mathrm{H}_{6} \mathrm{O} \quad \mathrm{MW}_{\mathrm{C}}=12.011 \mathrm{gm} \cdot \mathrm{mole}^{-1}\)
    \(\mathrm{MW}_{\mathrm{H}}=1.00794 \mathrm{~g} \mathrm{gm} \cdot \mathrm{mole}^{-1}\)
    \(\mathrm{MW}_{\mathrm{O}}=15.9994 \mathrm{gm} \cdot \mathrm{mole}^{-1}\)
    \(\mathrm{MW}_{\mathrm{C} 2 \mathrm{H} 6 \mathrm{O}}:=2 \cdot \mathrm{MW}_{\mathrm{C}}+6 \cdot \mathrm{MW}_{\mathrm{H}}+\mathrm{MW}_{\mathrm{O}}\)
    \(\mathrm{MW}_{\mathrm{C} 2 \mathrm{H} 6 \mathrm{O}}=46.06904 \mathrm{gmm} \cdot \mathrm{mole}^{-1}\)
```

Calculate the number of moles of a compound

Beer has about 10. gm of ethanol (C2H6O), how many moles of ethanol? How many ethanol molecules? How many carbon atoms? How many hydrogen atoms? How many oxygen atoms?

$$
\begin{array}{ll}
\text { Mass }_{\mathrm{C} 2 \mathrm{H} 6 \mathrm{O}}:=10.0 \cdot \mathrm{gm} & \\
\text { MW }_{\mathrm{C} 2 \mathrm{H} 6 \mathrm{O}}=46.06904 \circ \mathrm{gm} \cdot \mathrm{~mole}^{-1} & \\
\text { Mole }_{\mathrm{C} 2 \mathrm{H} 6 \mathrm{O}}:=\frac{\text { Mass }_{\mathrm{C} 2 \mathrm{H} 6 \mathrm{O}}^{\mathrm{MW}_{\mathrm{C} 2 \mathrm{H} 6 \mathrm{O}}}}{} & \text { Mole }_{\mathrm{C} 2 \mathrm{H} 6 \mathrm{O}}=0.21706552{ }^{\circ} \mathrm{mole} \\
\mathrm{~N}:=6.022136736 \cdot 10^{23} \cdot \mathrm{~mole}^{-1} & \text { Molecule } \mathrm{C} 2 \mathrm{H} 6 \mathrm{O}=1.30719823 \cdot 10^{23} \\
\text { Molecule }_{\mathrm{C} 2 \mathrm{H} 6 \mathrm{O}}:=\text { Mole }_{\mathrm{C} 2 \mathrm{H} 6 \mathrm{O}} \cdot \mathrm{~N} & \text { Atom } \mathrm{C}=2.61439645 \cdot 10^{23} \\
\text { Atom } \mathrm{C}:=2 \cdot \mathrm{Molecule}_{\mathrm{C} 2 \mathrm{H} 6 \mathrm{O}} & \text { Atom } \mathrm{H}=7.84318936 \cdot 10^{23} \\
\text { Atom } \mathrm{H}:=6 \cdot \text { Molecule }_{\mathrm{C} 2 \mathrm{H} 6 \mathrm{O}} & \text { Atom } \mathrm{O}=1.30719823 \cdot 10^{23} \\
\text { Atom } \\
\mathrm{O} & :=\text { Molecule }_{\mathrm{C} 2 \mathrm{H} 6 \mathrm{O}}
\end{array}
$$

One cup of Coffe has about 50 mg of caffeine $\left(\mathrm{C}_{8} \mathrm{~N}_{4} \mathrm{O}_{2} \mathrm{H}_{10}\right)$. How many moles of caffeine? How many Moles of carbon? How many moles of nitrogen? How many Moles of oxygen? How many moles of hydrogen?

```
Mass \(_{\text {caffeine }}:=50 \cdot \mathrm{mg}\)
\(\mathrm{mg}=1 \cdot 10^{-3}\) ogm
Mass \(_{\text {caffeine }}=0.05^{\circ} \mathrm{gm}\)
\(\mathrm{MW}_{\mathrm{C}}=12.011 \mathrm{gm} \cdot \mathrm{mole}{ }^{-1}\)
MW \(_{\mathrm{N}}:=14.00674 \cdot \mathrm{gm} \cdot \mathrm{mole}^{-1}\)
\(\mathrm{MW}_{\mathrm{O}}=15.9994 \mathrm{gm} \cdot \mathrm{mole}^{-1}\)
MW \(_{\mathrm{H}}=1.00794 \mathrm{gm} \cdot \mathrm{mole}^{-1}\)
\(\mathrm{MW}_{\text {caffeine }}:=8 \cdot \mathrm{MW}_{\mathrm{C}}+4 \cdot \mathrm{MW}_{\mathrm{N}}+2 \cdot \mathrm{MW}_{\mathrm{O}}+10 \cdot \mathrm{MW}_{\mathrm{H}}\)
MW \(_{\text {caffeine }}=194.19316^{\circ} \mathrm{gm} \cdot \mathrm{mole}^{-1}\)
```


Mole $_{C}:=8 \cdot$ Mole $_{\text {caffeine }}$	Mole ${ }_{C}=2.05980478 \cdot 10^{-3}$ omole
Mole $_{\mathrm{N}}:=4 \cdot$ Mole $_{\text {caffeine }}$	Mole ${ }_{\mathrm{N}}=1.02990239 \cdot 10^{-3}$ omole
Mole $_{\mathrm{O}}:=2 \cdot$ Mole $_{\text {caffeine }}$	Mole $\mathrm{O}=5.14951196 \cdot 10^{-4}$ 。mole
Mole $_{H}:=10 \cdot$ Mole $_{\text {caffeine }}$	Mole ${ }_{\mathrm{H}}=2.57475598 \cdot 10^{-3}$ omole

Calculate the mass (in grams) of the following:

It is possible to measure a pico mole of CCl_{4}. How many grams is this?

It is possible to measure an attomole of sodium. How many grams is this? How many atoms?

$$
\begin{array}{ll}
\text { Mole }_{\mathrm{Na}}:=10^{-18} \cdot \text { mole } & \text { MW }_{\mathrm{Na}}=22.989768 \circ \mathrm{gm} \cdot \mathrm{~mole}^{-1} \\
\text { Mass }_{\mathrm{Na}}:=\mathrm{MW}_{\mathrm{Na}} \cdot \text { Mole }_{\mathrm{Na}} & \text { Mass }_{\mathrm{Na}}=2.2989768 \cdot 10^{-17} \text { ogm } \\
\text { Atom }_{\mathrm{Na}}:=\text { Mole }_{\mathrm{Na}} \cdot \mathrm{~N} & \text { Atom }_{\mathrm{Na}}=6.02213674 \cdot 10^{5}
\end{array}
$$

A friend of mine from graduate school worked on a laser fluorescence experiment that measured special dye compounds at a concentration of 10 yocto moles. If the dye has a molecualar weight of $300 \mathrm{~g} / \mathrm{mole}$, how many grams is this? How many atoms?

$$
\begin{array}{ll}
\text { Mole }_{\text {dye }}:=10 \cdot 10^{-24} \cdot \mathrm{~mole}^{-1} & \\
\text { MW }_{\text {dye }}:=300 \cdot \mathrm{gm} \cdot \text { mole }^{-1} & \text { Mass dye }=3 \cdot 10^{-21}{ }^{\circ} \mathrm{ogm} \\
\text { Mass }_{\text {dye }}:=\text { Mole }_{\text {dye }} \text { MW } \\
\text { dye } & \text { Molecule } \text { dye }=6.02213674 \\
\text { Molecule }_{\text {dye }}:=\text { Mole }_{\text {dye }} \cdot \mathrm{N} & \text { M }
\end{array}
$$

In a laboratory experiment, it is routine to measure out 0.0154 mole of sodium chloride. How many grams is this?

$$
\begin{aligned}
& \text { Mole }_{\mathrm{NaCl}}:=0.0154 \cdot \mathrm{~mole} \\
& \text { MW }_{\mathrm{NaCl}}=58.442468 \circ \mathrm{gm} \cdot \mathrm{~mole}^{-1} \\
& \text { Mass }_{\mathrm{NaCl}}:=\text { Mole }_{\mathrm{NaCl}} \mathrm{MW}_{\mathrm{NaCl}} \\
& \text { Mass }_{\mathrm{NaCl}}=0.90001401 \mathrm{\circ gm}
\end{aligned}
$$

Calculate the percent mass of each element for the given chemical formula.

NaCl

$$
\begin{aligned}
& \text { MW }_{\mathrm{NaCl}}=58.442468 \mathrm{ogm} \cdot \mathrm{~mole}^{-1} \\
& \text { MW }_{\mathrm{Na}}=22.989768 \mathrm{ogm} \cdot \mathrm{~mole}^{-1} \\
& \text { MW }_{\mathrm{Cl}}=35.4527 \mathrm{gm} \cdot \mathrm{~mole}^{-1}
\end{aligned}
$$

Fraction $_{\mathrm{Na}}:=\frac{\mathrm{MW}_{\mathrm{Na}}}{\mathrm{MW}_{\mathrm{NaCl}}} \quad$ Fraction $_{\mathrm{Na}}=0.39337435 \quad$ Fraction $_{\mathrm{Na}}=39.337435240 \%$

Fraction $\mathrm{Cl}^{:}:=\frac{\mathrm{MW}_{\mathrm{Cl}}}{\mathrm{MW}_{\mathrm{NaCl}}} \quad$ Fraction $_{\mathrm{Cl}}=0.60662565 \quad$ Fraction $\mathrm{Cl}=60.662564760 \%$

