
Descriptive Statistics.

Determine the average and standard deviation for each data set.

Determine the following confidence intervals (2 sided) for each data set.
(Hint, you can find large tables for the t_{critical} in statistics
reference books (There are several good ones in our library, including
the CRC handbook of statistics). Also most spreadsheet programs can calculate
the tcritical for any confidence interval but you will have to read the
help to figure out how to use this function.)

68%

90%

95%

99%

99.9%

Comparison Tests.

For the Set #1 and Set#2; compare the means, and determine if there is
a significant difference between the two means at the 95% Confidence Interval.

For Set #3 and Set #4; Compare the means, and determine if there is a significant
difference between the two means at the 99% Confidence Interval.

For the experiments with Set #3, and Set #4, I am really interested in
finding if Set #4 is significantly larger than Set #3. Determine if this
is true at the 90% Confidence Interval. (Hint: think about how many sides
the distributions could overlap for this test.)

Determine if there is a significant difference between the true value and
the experimental value (from the data set) at the 95% Confidence Interval.
The true values for the data sets are:

Set #1 14.0

Set #2 14.0

Set #3 22.0

Set #4 24.0

zScore. For set #1, normalize the data by zscoring (calculate
z for each measurement). What is the average and standard deviation of
the zscored data?

Rejection of outliers. For set #2 use the Qtest to determine if
17.2876 is an outlier.
This page is maintained by
Scott Van Bramer
Department
of Chemistry
Widener University
Chester, PA 19013
Please send any comments, corrections, or suggestions to
svanbram@science.widener.edu.
This page has been accessed 14138times
since 1/8/98.
Last Updated 1/8/98