RC Electronics

This document explores the properties of RC (Resistor/Capacitor) circuits.

Constants and Definitions:

\[k = 1000 \text{ ohm} \quad \text{kHz} : = 1000 \text{ Hz} \quad \mu \text{F} : = 10^{-6} \text{ farad} \quad \text{dB}(x) : = 20 \cdot \log(x) \quad \text{MHz} : = 10^6 \text{ Hz} \]

Input voltage for worksheet.

\[V_{\text{in}} : = 1 \text{ volt} \]

Equations for Charging and Discharging RC Circuits

\[t : = 0 \text{ sec}, \frac{5 \cdot R \cdot C \cdot C}{500} \quad \text{Range of time for graphing, from 0 to 5*RC} \]

\[V_{\text{charge}(t)} : = V_{\text{in}} \left(1 - e^{-\frac{t}{R \cdot C \cdot C}} \right) \quad \text{Equation for voltage of a charging RC circuit} \]

\[V_{\text{discharge}(t)} : = V_{\text{in}} e^{-\frac{t}{R \cdot C \cdot C}} \quad \text{Equation for voltage of discharging RC circuit.} \]

Frequency Range for graphing filter response:

Low Frequency Limit \[f_{\text{low}} : = 0.01 \text{ Hz} \]

High Frequency Limit \[f_{\text{high}} : = 10 \text{ MHz} \]

Frequency Index

\[f : = \log(f_{\text{low}} \text{ Hz}^{-1}) \cdot \log(f_{\text{low}} \text{ Hz}^{-1}) + \left[\log\left(\frac{f_{\text{high}}}{f_{\text{low}}} \right) \right] \cdot \log(f_{\text{high}} \text{ Hz}^{-1}) \]

\[g(f) : = 10^f \text{ Hz} \]
Equations for RC Filters:

\[
A_{\text{HP}}(f) := \frac{(2 \cdot \pi g(f)) \cdot R_F \cdot C_F}{\sqrt{(2 \cdot \pi g(f))^2 \cdot R_F^2 \cdot C_F^2 + 1}}
\]

Amplitude of high pass filter

\[
A_{\text{LP}}(f) := \frac{1}{\sqrt{(2 \cdot \pi g(f))^2 \cdot R_F^2 \cdot C_F^2 + 1}}
\]

Amplitude of low pass filter

\[
\phi_{\text{HP}}(f) := \arctan \left[\frac{1}{(2 \cdot \pi g(f)) \cdot R_F \cdot C_F} \right]
\]

Phase of high pass filter

\[
\phi_{\text{LP}}(f) := \arctan \left[-\frac{1}{(2 \cdot \pi g(f)) \cdot R_F \cdot C_F} \right] - \frac{\pi}{2}
\]

Phase of low pass filter

Equations for scope output

\[
f_{\text{signal}} := \log(\text{frequency} \cdot \text{sec})
\]

\[
t_{\text{scope}} := 0, 5/\text{sec}, 5/\text{frequency} \cdot 500
\]

\[
V_{\text{signal}}(t) := \sin((2 \cdot \pi \cdot \text{frequency}) \cdot t)
\]

\[
V_{\text{LP}}(t) := A_{\text{LP}}(f_{\text{signal}}) \cdot \sin((2 \cdot \pi \cdot \text{frequency}) \cdot t + \phi_{\text{LP}}(f_{\text{signal}}))
\]

\[
V_{\text{HP}}(t) := A_{\text{HP}}(f_{\text{signal}}) \cdot \sin((2 \cdot \pi \cdot \text{frequency}) \cdot t + \phi_{\text{HP}}(f_{\text{signal}}))
\]
Charging and Discharging of RC Circuit

Resistance of Circuit \(R_C = 5 \cdot k \)

Capacitance of Circuit \(C_C = 1 \cdot \mu F \)

![Diagram of RC Charging and Discharging](attachment:diagram.png)
Frequency and Phase Response of High Pass and Low Pass RC Filter

\[R_{F} = 5 \cdot k \]
\[C_{F} = 1 \cdot \mu F \]
\[R_{F} \cdot C_{F} = 0.005 \cdot \text{sec} \]
\[\frac{1}{2 \cdot \pi \cdot R_{F} \cdot C_{F}} = 31.831 \cdot \text{sec}^{-1} \]

![Filter Gain Graph](image)

![Filter Gain Graph](image)

![Phase Shift Graph](image)
Waveform for RC Filters (Virtual Oscilloscope)

Input Frequency

\[
\text{frequency } \approx 100 \text{-Hz}
\]

\[
\frac{1}{2 \pi R C} = 31.831 \text{ Hz}
\]

Circuit Gain:

Low Pass

\[A_{LP}(f_{signal}) = 0.303 \]

High Pass

\[A_{HP}(f_{signal}) = 0.953 \]

Circuit Gain (in decibals):

Low Pass

\[\text{dB}(A_{LP}(f_{signal})) = -10.362 \]

High Pass

\[\text{dB}(A_{HP}(f_{signal})) = -0.419 \]

Circuit Phase Shift:

Low Pass

\[\phi_{LP}(f_{signal}) = -0.402 \cdot \pi \text{-rad} \]

\[\phi_{LP}(f_{signal}) = -72.343 \cdot \text{deg} \]

High Pass

\[\phi_{HP}(f_{signal}) = 0.098 \cdot \pi \text{-rad} \]

\[\phi_{HP}(f_{signal}) = 17.657 \cdot \text{deg} \]
Questions:

To answer the questions, change the values in the yellow fields.

To read coordinates from a plot: Click on the plot, then choose Trace from the X-Y Plot menu. Click and drag the mouse over the points whose coordinates you want to see. Press Alt+F4 to dismiss the dialog box.

1. Using a 1 µF capacitor and 1k, 10k, 100k, 500k resistors, look at the RC charging and discharging graph. Repeat using a 10k resistor and 1, 0.1, 0.001, 0.0001 µF capacitors. Make a table that shows the value of the capacitor, resistor, RC time constant, half life, and time for 90% charging. What is the significance of the RC time constant?

2. How do the RC Charging plots relate to first order kinetics? Look at your general chemistry textbook and find the equation for a first order reaction. Compare these equations. What variable in the kinetics equation is equivalent to the RC time constant?

3. Using a 1 µF capacitor and 1k, 10k, 100k, 500k resistors, what frequencies are blocked and transmitted by the low and high pass filters?

4. Using a 10k resistor and 1, 0.1, 0.001, 0.0001 µF capacitors, what frequencies are blocked and transmitted by the low and high pass filters?

5. How does the phase of the signal change in a high and low pass filter for a signal that is transmitted and a signal that is attenuated?

6. Why are logarithmic scales used?

7. Use the page for the "Waveform for RC Filters" to study how a sine wave looks after passing through a high pass or a low pass filter. Change the input frequency and observe the waveforms. Pay close attention to the amplitude and phase of the waves.

This Document was developed by:

Scott E. Van Bramer
Department of Chemistry
Widener University
Chester, PA 19013
svanbram@science.widener.edu
http://science.widener.edu/~svanbram