Solutions to: Electrochemistry Homework Problem Set
S.E. Van Bramer 1/3/17

1. Balance the following chemical equations. Assume the reactions occur in acidic solutions (add H$^{1+}$ and/or H$_2$O as necessary). For each reaction identify the oxidizing and reducing agent. Identify which reactant is oxidized and which is reduced. Write the appropriate half reactions. Determine ΔG for the reaction and E^o for the reaction.

a. $\text{Sn}^{2+}(aq) + 2 \text{Hg}^{2+} (aq) + 2 \text{Cl}^{-} (aq) \rightarrow \text{Sn}^{4+}(aq) + \text{Hg}_2\text{Cl}_2 (s)$

 Oxidizing Agent Hg$^{2+}$
 Reducing Agent Sn$^{2+}$
 Oxidized Sn$^{2+}$
 Reduced Hg$^{2+}$

 Half Reactions
 Oxidation $\text{Sn}^{2+} (aq) \rightarrow \text{Sn}^{4+} (aq) + 2 \text{e}^{-}$
 Reduction $2 \text{Hg}^{2+} (aq) + 2 \text{Cl}^{-} (aq) + 2 \text{e}^{-} \rightarrow \text{Hg}_2\text{Cl}_2 (s)$

 $E_{\text{anode}} := 0.15\text{-volt}$
 $F := 96485.309 \frac{\text{coul}}{\text{mole}}$
 $E_{\text{cathode}} := 0.2682\text{-volt}$
 Since the cell potentials are available for these half reactions, I will use them to calculate E_{cell}. Then Use E_{cell} to calculate ΔG.

 $E_{\text{cell}} := E_{\text{cathode}} - E_{\text{anode}}$
 $E_{\text{cell}} = 0.118\text{ volt}$
 $n := 2$
 $\Delta G := -n \cdot F \cdot E_{\text{cell}}$
 $\Delta G = -2.281 \times 10^4 \text{ mol}^{-1} \text{ joule}$

b. $6 \text{Fe}^{2+} (aq) + \text{Cr}_2\text{O}_7^{2-} (aq) + 14\text{H}^{1+} (aq) \rightarrow 6 \text{Fe}^{3+} (aq) + 2 \text{Cr}^{3+} (aq) + 7 \text{H}_2\text{O} (l)$

 Oxidizing Agent $\text{Cr}_2\text{O}_7^{2-}$
 Reducing Agent Fe$^{2+}$
 Oxidized Fe$^{2+}$
 Reduced $\text{Cr}_2\text{O}_7^{2-}$

 Half Reactions
 Oxidation $\text{Fe}^{2+} (aq) \rightarrow \text{Fe}^{3+} (aq) + 1 \text{e}^{-}$
 Reduction $\text{Cr}_2\text{O}_7^{2-} (aq) + 14\text{H}^{1+} (aq) + 6 \text{e}^{-} \rightarrow 2 \text{Cr}^{3+} (aq) + 7 \text{H}_2\text{O} (l)$

 $E_{\text{anode}} := 0.77\text{-volt}$
 $E_{\text{cathode}} := 1.33\text{-volt}$
 $E_{\text{cell}} := E_{\text{cathode}} - E_{\text{anode}}$
 $E_{\text{cell}} = 0.56\text{ volt}$
 $n := 6$
 $\Delta G := -n \cdot F \cdot E_{\text{cell}}$
 $\Delta G = -3.242 \times 10^5 \text{ mol}^{-1} \text{ joule}$
d. \(Zn(s) + 2 \text{HCl(aq)} \rightarrow Zn^{2+}(aq) + \text{H}_2(g) + 2 \text{Cl}^{-}(aq) \)

Oxidizing Agent \(\text{H}^1+ \)
Reducing Agent \(\text{Zn} \)
Oxidized \(\text{Zn} \)
Reduced \(\text{H}^1+ \)

Half Reactions

Oxidation \(\text{Zn(s)} \rightarrow \text{Zn}^{2+}(aq) + 2 \text{e}^- \)
Reduction \(2 \text{H}^1+ (aq) + 2 \text{e}^- \rightarrow \text{H}_2(g) \) (\(\text{Cl}^1- \) (aq) is a spectator ion)

\[E_{\text{anode}} = -0.7628 \text{ volt} \]

\[E_{\text{cathode}} = 0 \text{ volt} \]

\[E_{\text{cell}} = E_{\text{cathode}} - E_{\text{anode}} \]

\(E_{\text{cell}} = 0.763 \text{ volt} \)

\(n := 2 \)

\[\Delta G := -n \cdot F \cdot E_{\text{cell}} \]

\[\Delta G = -1.472 \times 10^5 \text{ mol}^{-1} \text{ joule} \]

e. \(\text{CH}_4 + 2 \text{O}_2 \rightarrow \text{CO}_2 + 2 \text{H}_2\text{O} \)

Oxidizing Agent \(\text{O}_2 \)
Reducing Agent \(\text{CH}_4 \)
Oxidized \(\text{CH}_4 \)
Reduced \(\text{O}_2 \)

Half Reactions

Oxidation \(\text{CH}_4 + 2 \text{H}_2\text{O} \rightarrow \text{CO}_2 + 8 \text{H}^1+ + 8 \text{e}^- \)
Reduction \(2 \text{O}_2 + 8 \text{H}^1+ + 8 \text{e}^- \rightarrow 4 \text{H}_2\text{O} \)

\[kJ := 10^3 \text{ joule} \]

\[\Delta G := \left[\left(-394.359 + (2 \cdot -228.572) \right) - \left(-50.72 + 2 \cdot 0 \right) \right] \text{kJ} \]

\[\Delta G = -8.008 \times 10^5 \text{ joule} \]

\(n := 8 \)

\[E := \frac{-\Delta G}{n \cdot F} \]

\[E = 1.037 \text{ mol volt} \]

Since the reduction potentials are not available (readily) for these half reactions, I will use \(\Delta G \) to calculate \(\Delta G_{\text{rxn}} \) and then use this to calculate \(E_{\text{cell}} \).
2. Write a figure showing an electrochemical cell that will generate electricity based upon the oxidation of iron to iron (II), and the reduction of silver (I) to silver metal. See Figure 21.3 on page 959 of Kotz for a figure of a voltaic cell.

a. Write a balanced chemical equation
 \[\text{Fe (s)} + 2 \text{Ag}^{1+} (\text{aq}) \rightarrow \text{Fe}^{2+} (\text{aq}) + 2 \text{Ag (s)} \]

b. Write the cell notation for this system
 \[\text{Fe (s)} | \text{Fe}^{2+} (\text{aq}) || \text{Ag}^{1+} (\text{aq}) | \text{Ag (s)} \]

c. Write the half reactions for each cell
 Anode (oxidation) \[\text{Fe (s)} \rightarrow \text{Fe}^{2+} (\text{aq}) + 2 \text{e}^- \]
 Cathode (reduction) \[\text{Ag}^{1+} (\text{aq}) + 1 \text{e}^- \rightarrow \text{Ag (s)} \]

d. Label the anode and the cathode
 The Anode is the piece of Fe
 The cathode is the piece of Ag

e. Show the direction of electron motion through the external circuit
 Electrons flow from the anode to the cathode

f. Show the motion of ions in the solution

 At the anode an excess of cations (positive ions) are produced, at the cathode cations are consumed. To balance the charge in the half cells anions (negative ions) must move from the cathode side (where they are no longer needed to balance the charge) to the anode side (where more are needed to balance the additional charge).

g. Show the transfer of ions at the electrode surface
 Anode: Fe^{2+} ions are produced so ions go from the electrode surface into solution.
 Cathode: Ag^{1+} ions are consumed so ions go from the solution to the electrode surface.

h. Calculate the standard cell potential
 \[E_{\text{anode}} = -0.44 \text{ volt} \]
 \[E_{\text{cathode}} = 0.7994 \text{ volt} \]

 \[E_{\text{cell}} = E_{\text{cathode}} - E_{\text{anode}} \]
 \[E_{\text{cell}} = 1.239 \text{ volt} \]

i. Is this cell spontaneous?
 Yes, \(E_{\text{cell}} \) is positive

j. Calculate the standard cell potential for the reverse reaction.
 \[E_{\text{reverse}} = -E_{\text{cell}} \]
 \[E_{\text{reverse}} = -1.239 \text{ volt} \]
3. Identify the anode, the cathode, the reduced species and the oxidized species for the following electrochemical cells. Write the half reactions for the anode and cathode, the overall reaction. Calculate the standard cell potential and the cell potential.

a. \(\text{Fe} (s) \mid \text{Fe}^{2+} (aq) \, (0.2 \, \text{M}) \parallel \text{Ni}^{2+} (aq) \, (0.1 \, \text{M}) \mid \text{Ni}(s) \)

<table>
<thead>
<tr>
<th>Anode</th>
<th>Cathode</th>
<th>Reduced</th>
<th>Oxidized</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\text{Fe} (s))</td>
<td>(\text{Ni} (s))</td>
<td>(\text{Ni}^{2+})</td>
<td>(\text{Fe} (s))</td>
</tr>
</tbody>
</table>

Half Reactions

- Anode: \(\text{Fe} (s) \rightarrow \text{Fe}^{2+} + 2e^- \)
- Cathode: \(\text{Ni}^{2+} + 2e^- \rightarrow \text{Ni}(s) \)

Overall Reaction:

\(\text{Fe}(s) + \text{Ni}^{2+} \rightarrow \text{Fe}^{2+} + \text{Ni}(s) \)

Standard Reduction Potentials for each half reaction:

- \(E_{\text{anode}} = -0.409 \, \text{volt} \)
- \(E_{\text{cathode}} = -0.23 \, \text{volt} \)

Standard Cell potential:

\[E_{\text{std,cell}} := E_{\text{cathode}} - E_{\text{anode}} \]

\[E_{\text{std,cell}} = 0.179 \, \text{volt} \]

Some Constants:

\[M := \text{mole-liter}^{-1} \]
\[R := 8.314 \, \text{ joule} \cdot \text{K}^{-1} \cdot \text{mole}^{-1} \]
\[F = 9.649 \times 10^4 \, \text{mol}^{-1} \cdot \text{C} \]
\[T := (273.15 + 25) \, \text{K} \]

Cell Potential:

\[E_{\text{cell}} := E_{\text{std,cell}} - \frac{R \cdot T}{n \cdot F} \ln \left(\frac{C_{\text{Fe}}}{C_{\text{Ni}}} \right) \]

\[E_{\text{cell}} = 0.17 \, \text{volt} \]
b. Zn (s) | Zn$^{2+}$ (aq) (1.0 x 10^{-3} M) || Cl$^{1-}$ (aq) (0.3 M) | Cl$_2$ (g) (100 torr) | Pt (s)

Anode: Zn (s)
Cathode: Pt (s)
Reduced: Cl$_2$
Oxidized: Zn (s)

Half Reactions:

Anode: Zn (s) \rightarrow Zn$^{2+}$ + 2e$^{-}$
Cathode: 2 Cl$^{1-}$ + 2e$^{-}$ \rightarrow Cl$_2$(g)

Overall Reaction: Zn (s) + 2 Cl$^{1-}$ \rightarrow Zn$^{2+}$ + Cl$_2$(g)

Standard Reduction Potentials for each half reaction:

$E_{\text{anode}} = -0.7628$ volt

$E_{\text{cathode}} = 1.3583$ volt

Standard Cell potential:

$E_{\text{std_cell}} = E_{\text{cathode}} - E_{\text{anode}}$

$E_{\text{std_cell}} = 2.121$ volt

Cell potential:

$C_{\text{Zn}} := 1.0 \cdot 10^{-3}$

$C_{\text{Cl}} := 0.3$

$C_{\text{Cl}_2} := \frac{100}{760}$

$n := 2$

$E_{\text{cell}} := E_{\text{std_cell}} - \frac{R \cdot T}{n \cdot F} \cdot \ln \left(\frac{C_{\text{Zn}} \cdot C_{\text{Cl}_2}}{C_{\text{Cl}}^2} \right)$

$E_{\text{cell}} = 2.205$ volt

NOTE: For these equilibrium calculations, all concentrations must be relative to the standard state. Concentrations are in molarity, gas pressure in atmosphere.
c. Pb (s) | Pb^{2+} (aq) (1.0 M) || Cu^{2+} (aq) (1.0 M) | Cu (s)
Anode Pb (s)
Cathode Cu (s)
Reduced Cu^{2+}
Oxidized Pb (s)

Half Reactions
Anode Pb (s) \rightarrow Pb^{2+} + 2e^{-}
Cathode Cu^{2+} + 2e^{-} \rightarrow Cu (s)

Overall Reaction Pb (s) + Cu^{2+} \rightarrow Pb^{2+} + Cu (s)

Standard Reduction Potentials for each half reaction:

\(E_{anode} := -0.1263 \text{·volt} \)
\(E_{cathode} := 0.3402 \text{·volt} \)

Standard Cell potential:

\(E_{std_cell} := E_{cathode} - E_{anode} \)
\(E_{std_cell} = 0.467 \text{volt} \)

Some Constants:

\(M := \text{mole·liter}^{-1} \)
\(R := 8.314 \text{·joule·K}^{-1}·\text{mole}^{-1} \)
\(F = 9.649 \times 10^4 \text{·mol}^{-1}·\text{C} \)
\(T := (273.15 + 25)\text{-K} \)

Cell Potential:

\(C_{Pb} := 1\cdot M \)
\(C_{Cu} := 1\cdot M \)
\(n := 2 \)

\(E_{cell} := E_{std_cell} - \frac{R·T}{n·F}·\ln\left(\frac{C_{Pb}}{C_{Cu}} \right) \)

\(E_{cell} = 0.467 \text{volt} \)
4. The following cell has a potential of 0.100 V. Calculate the pH at the anode:

\[
\text{Pt (s)} \mid \text{H}_2 (g, 1 \text{ atm}) \mid \text{H}^{1+} (\text{aq}, ? \text{ M}) \parallel \text{H}^{1+} (0.10 \text{ M}) \mid \text{H}_2 (g, 1 \text{ atm}) \mid \text{Pt (s)}
\]

The two half reactions (written as reductions are)

- **Anode (unknown H\(^+\))** Oxidation \(\text{H}^+ + 2\text{e}^- \leftrightarrow \text{H}_2 \) \(\text{E}_\text{o} = 0.000 \)
- **Cathode (0.1M H\(^+\))** Reduction \(\text{H}^+ + 2\text{e}^- \leftrightarrow \text{H}_2 \) \(\text{E}_\text{o} = 0.000 \)

Calculate the standard cell potential:

- \(\text{E}_\text{anode} := 0.000 \text{-volt} \)
- \(\text{E}_\text{cathode} := 0.000 \text{-volt} \)
- \(\text{E}_\text{std_cell} := \text{E}_\text{cathode} - \text{E}_\text{anode} \) \(\text{E}_\text{std_cell} = 0 \text{ volt} \)
- \(n := 2 \)

Then from the Nemst equation

- \(\text{E}_\text{cell} := 0.1 \text{-volt} \)
- \(\text{E}_\text{cell} = \text{E}_\text{std_cell} - \frac{R \cdot T}{n \cdot F} \ln(Q) \)
- \(\text{E}_\text{cell} = -\frac{R \cdot T}{n \cdot F} \ln(Q) \)
- \(Q := \exp\left[-\frac{\text{E}_\text{cell} \cdot n \cdot F}{(R \cdot T)} \right] \)
- \(Q = 4.16 \times 10^{-4} \)

From the balanced equation:

- \(C_\text{anode} = X \quad C_\text{cathode} := 0.1 \cdot \text{M} \)
- \(P_\text{anode} := 1 \cdot \text{atm} \quad P_\text{cathode} := 1 \cdot \text{atm} \)

\[
Q = \frac{C_\text{anode}^2 \cdot P_\text{cathode}}{C_\text{cathode}^2 \cdot P_\text{anode}}
\]

\[
C_\text{anode} := \sqrt{Q \cdot C_\text{cathode}^2 \cdot P_\text{anode}} \quad C_\text{anode} = 2.04 \times 10^{-3} \text{ M}
\]

\[
\text{pH} := -\log\left(C_\text{anode} \cdot \text{M}^{-1} \right) \quad \text{pH} = 2.69
\]
5. On space craft, a H$_2$/O$_2$ fuel cell is used to produce electricity.

a. The reactions

i. What is the reaction at the anode?
 \[\text{H}_2 \leftrightarrow 4 \text{H}^+ + 4e^- \]

ii. What is the reaction at the cathode?
 \[\text{O}_2 + 4 \text{H}^+ + 4e^- \leftrightarrow 2 \text{H}_2\text{O} \]

iii. What is the balanced redox reaction?
 \[\text{O}_2 + 2 \text{H}_2 \rightarrow 2 \text{H}_2\text{O} \]

iv. What is E_{cell} assuming $P_{o2} = 2 \text{ atm}$, and $P_{H2} = 2 \text{ atm}$.

What is E_{cell} when:

$$P_{O2} := 2 \cdot \text{atm} \quad P_{H2} := 2 \cdot \text{atm} \quad T := 293.15 \cdot \text{K}$$

First calculate E_{cell}:

- $E_{anode} := 0.000 \cdot \text{volt}$
- $E_{cathode} := 1.229 \cdot \text{volt}$
- $E_{std_cell} := E_{cathode} - E_{anode} \quad E_{std_cell} = 1.229 \cdot \text{volt}$

Then calculate E_{cell} under these conditions

$$Q := \frac{(1 \cdot \text{atm})^3}{(2 \cdot \text{atm})^2}$$

The atm3 is just to cancel the units for pressure. The concentration of water is not included in the expression (as with K_a for acids).

Nernst Equation:

$$E_{cell} := E_{std_cell} - \left(\frac{R \cdot T}{n \cdot F} \right) \ln(Q) \quad E_{cell} = 1.255 \cdot \text{volt}$$
b. If two cylinders of \(\text{H}_2 \) and one cylinder of \(\text{O}_2 \) (cylinder: volume = 200 liter, pressure = 3000 psi) are used.

i. How many moles of electrons can be produced?

\[V_{\text{cylinder}} := 200 \text{ liter} \quad P_{\text{cylinder}} := 3000 \text{ psi} \]

Use the ideal gas law to find moles of gas in a cylinder

\[R = 8.314 \text{ joule} \cdot \text{K}^{-1} \cdot \text{mole}^{-1} \quad T = 293.15 \text{ K} \]

\[
mole_{\text{cylinder}} := \frac{P_{\text{cylinder}} V_{\text{cylinder}}}{R T}
\]

\[mole_{\text{cylinder}} = 1.697 \times 10^3 \text{ mole} \]

Moles of each gas

\[\text{O}_2_{\text{mole}} := mole_{\text{cylinder}} \quad \text{O}_2_{\text{mole}} = 1.697 \times 10^3 \text{ mol} \]

\[\text{H}_2_{\text{mole}} := 2 \cdot mole_{\text{cylinder}} \quad \text{H}_2_{\text{mole}} = 3.395 \times 10^3 \text{ mol} \]

Next from the balanced half reactions:

Cathode \[\text{O}_2 + 4 \text{H}^+ + 4\text{e}^- \leftrightarrow 2 \text{H}_2\text{O} \]

Anode \[2 \text{H}_2 \leftrightarrow 4 \text{H}^+ + 4\text{e}^- \]

Overall \[\text{O}_2 + 2 \text{H}_2 \rightarrow 2 \text{H}_2\text{O} \]

Each mole of \(\text{O}_2 \) that reacts, uses 4 moles of electrons so that

\[\text{O}_2_{\text{mole}} = 0.5 \text{H}_2_{\text{mole}} \quad \text{Moles of \text{O}_2 and Moles \text{H}_2 are in correct stoichiometry so no limiting reagent.} \]

\[\text{mole}_{\text{electron}} := 4 \cdot \text{O}_2_{\text{mole}} \quad \text{mole}_{\text{electron}} = 6.789 \times 10^3 \text{ mole} \]

ii. How much energy (joules) is this?

From the moles of electrons and Faraday's constant, the amount of electricity is:

\[F = 9.649 \times 10^4 \text{ C} \cdot \text{mole}^{-1} \]

\[\text{charge} := \text{mole}_{\text{electron}} F \quad \text{charge} = 6.551 \times 10^8 \text{ C} \]

How much energy (joules) is this:

\[\text{Energy} := \text{charge} \cdot E_{\text{cell}} \quad \text{Energy} = 8.223 \times 10^8 \text{ joule} \]
iii. If this energy has to last for 1 week, what is the average power (watts) available?

Average Power (watts) for 1 week:

\[
\text{time} := 7 \cdot \text{day} \quad \text{time} = 6.048 \times 10^5 \text{s}
\]

\[
\text{Power} := \frac{\text{Energy}}{\text{time}} \quad \text{Power} = 1.36 \times 10^3 \text{ watt}
\]

This reaction provides enough energy to power 18, 75 watt light bulbs for 1 week.

\[
\text{light} := 75 \cdot \text{watt} \quad \text{Power} = 18.128 \text{ light}
\]

c. Compare the amount of energy produced by this fuel cell to the energy produced by the combustion of the same amount of H\(_2\) and O\(_2\) using \(\Delta G_{\text{rxn}}\).

Energy from combustion:

\[
\Delta G_{\text{rxn, std}} := -237.129 \cdot 10^3 \text{ joule-mole}^{-1}
\]

\[
\Delta G_{\text{rxn}} := \Delta G_{\text{rxn, std}} + R \cdot T \cdot \ln \left(\frac{1}{P_{\text{H}_2}} \frac{2}{P_{\text{O}_2}} \right)
\]

Combustion := \(\Delta G_{\text{rxn}} \cdot \text{H}_2\text{mole}\) This is essentially identical to the value calculated from the cell potential. The different signs are the result of different conventions. \(\Delta G\) is the energy of the reactants (since they loose energy to the surroundings it is negative). The cell potential calculates the energy released by the reaction (so it is positive).

\[
\text{Combustion} = -8.222 \times 10^8 \text{ joule}
\]
6. Electrochemical Analysis techniques are capable of detecting very small amounts of certain metals. In one type of analysis Cd\(^{2+}\) undergoes electrolysis. In this experiment it is possible to detect a signal from 1 pA of current, lasting only 1 ms.

a. How many moles of Cd\(^{2+}\) does this correspond to?

\[
\text{current} := 1 \cdot 10^{-12} \text{amp} \quad \text{time} := 1 \cdot 10^{-3} \text{sec}
\]

Find the electrical charge

\[\text{charge} := \text{current} \times \text{time}\]

\[\text{charge} = 1 \times 10^{-15} \text{C}\]

Find the moles of electrons from the charge and Faraday's constant:

\[\text{electron}_{\text{mole}} := \frac{\text{charge}}{F}\]

\[\text{electron}_{\text{mole}} = 1.036 \times 10^{-20} \text{mole}\]

From the balanced half reaction \(\text{Cd}^{2+} + 2e^- \leftrightarrow \text{Cd}\)

\[
\text{Cd} := \frac{1}{2} \cdot \text{electron}_{\text{mole}}
\]

\[\text{Cd} = 5.182 \times 10^{-21} \text{mole}\]

b. How many atoms is this?

\[\text{atom} := \frac{1 \cdot \text{mole}}{6.02 \times 10^{23}}\]

\[\text{Cd} = 3.12 \times 10^3 \text{atom}\]